Parallel Associative Classification Data Mining Frameworks Based MapReduce

Author:

Thabtah Fadi1,Hammoud Suhel2,Abdel-Jaber Hussein3

Affiliation:

1. E-Business Dept, Canadian University of Dubai, Dubai, UAE

2. Electronic and Computing Dept, Brunel University, Uxbridge, UK

3. Faculty of Computer Studies-Kingdom of Saudi Arabia, Arab Open University, Kingdom of Saudi Arabia

Abstract

Associative classification (AC) is a research topic that integrates association rules with classification in data mining to build classifiers. After dissemination of the Classification-based Association Rule algorithm (CBA), the majority of its successors have been developed to improve either CBA's prediction accuracy or the search for frequent ruleitems in the rule discovery step. Both of these steps require high demands in processing time and memory especially in cases of large training data sets or a low minimum support threshold value. In this paper, we overcome the problem of mining large training data sets by proposing a new learning method that repeatedly transforms data between line and item spaces to quickly discover frequent ruleitems, generate rules, subsequently rank and prune rules. This new learning method has been implemented in a parallel Map-Reduce (MR) algorithm called MRMCAR which can be considered the first parallel AC algorithm in the literature. The new learning method can be utilised in the different steps within any AC or association rule mining algorithms which scales well if contrasted with current horizontal or vertical methods. Two versions of the learning method (Weka, Hadoop) have been implemented and a number of experiments against different data sets have been conducted. The ground bases of the comparisons are classification accuracy and time required by the algorithm for data initialization, frequent ruleitems discovery, rule generation and rule pruning. The results reveal that MRMCAR is superior to both current AC mining algorithms and rule based classification algorithms in improving the classification performance with respect to accuracy.

Publisher

World Scientific Pub Co Pte Lt

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3