Optimal Diffusion Schemes and Load Balancing on Product Graphs

Author:

ELSÄSSER ROBERT1,MONIEN BURKHARD1,PREIS ROBERT1,FROMMER ANDREAS2

Affiliation:

1. Department of Computer Science, Electrical Engineering, and Mathematics, University of Paderborn, D-33102 Paderborn, Germany

2. Department of Mathematics and Computer Science, University of Wuppertal, D-42097 Wuppertal, Germany

Abstract

We discuss nearest neighbor load balancing schemes on processor networks which are represented by a cartesian product of graphs and present a new optimal diffusion scheme for general graphs. In the first part of the paper, we introduce the Alternating-Direction load balancing scheme, which reduces the number of load balance iterations by a factor of 2 for cartesian products of graphs. The resulting flow is theoretically analyzed and can be very high for certain cases. Therefore, we further present the Mixed-Direction scheme which needs the same number of iterations but computes in most cases a much smaller flow. In the second part of the paper, we present a simple optimal diffusion scheme for general graphs, calculating a balancing flow which is minimal in the l2 norm. It is based on the spectra of the graph representing the network and needs only m-1 iterations to balance the load with m being the number of distinct eigenvalues. Known optimal diffusion schemes have the same performance, however the optimal scheme presented in this paper can be implemented in a very simple manner. The number of iterations of optimal diffusion schemes is independent of the load scenario and, thus, they are practical for networks which represent graphs with known spectra. Finally, our experiments exhibit that the new optimal scheme can successfully be combined with the Alternating-Direction and Mixed-Direction schemes for efficient load balancing on product graphs.

Publisher

World Scientific Pub Co Pte Lt

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Another estimation of Laplacian spectrum of the Kronecker product of graphs;Information Sciences;2022-09

2. Distributed load-balancing for account-based sharded blockchains;International Journal of Web Information Systems;2022-07-28

3. The nine node Extrapolated Diffusion method for weighted torus graphs;Journal of Parallel and Distributed Computing;2017-08

4. Efficient load balancing on biswapped networks;Cluster Computing;2013-01-09

5. The Nine Neighbor Extrapolated Diffusion Method for Weighted Torus Graphs;Parallel Processing and Applied Mathematics;2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3