Affiliation:
1. School of Electrical Engineering, Tel Aviv University, Israel
2. Department of Computer Science, University of Liverpool, UK
3. CNRS and Université Paris Diderot, France
Abstract
We consider a message passing model with n nodes, each connected to all other nodes by a link that can deliver a message of B bits in a time unit (typically, B = O(log n)). We assume that each node has an input of size L bits (typically, L = O(n log n)) and the nodes cooperate in order to compute some function (i.e., perform a distributed task). We are interested in the number of rounds required to compute the function. We give two results regarding this model. First, we show that most boolean functions require ‸ L/B ‹ − 1 rounds to compute deterministically, and that even if we consider randomized protocols that are allowed to err, the expected running time remains [Formula: see text] for most boolean function. Second, trying to find explicit functions that require superconstant time, we consider the pointer chasing problem. In this problem, each node i is given an array Ai of length n whose entries are in [n], and the task is to find, for any [Formula: see text], the value of [Formula: see text]. We give a deterministic O(log n/ log log n) round protocol for this function using message size B = O(log n), a slight but non-trivial improvement over the O(log n) bound provided by standard “pointer doubling.” The question of an explicit function (or functionality) that requires super constant number of rounds in this setting remains, however, open.
Publisher
World Scientific Pub Co Pte Lt
Subject
Hardware and Architecture,Theoretical Computer Science,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Towards a Complexity Theory for the Congested Clique;Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures;2018-07-11