Clique Here: On the Distributed Complexity in Fully-Connected Networks

Author:

Applebaum Benny1,Kowalski Dariusz R.2,Patt-Shamir Boaz1,Rosén Adi3

Affiliation:

1. School of Electrical Engineering, Tel Aviv University, Israel

2. Department of Computer Science, University of Liverpool, UK

3. CNRS and Université Paris Diderot, France

Abstract

We consider a message passing model with n nodes, each connected to all other nodes by a link that can deliver a message of B bits in a time unit (typically, B = O(log n)). We assume that each node has an input of size L bits (typically, L = O(n log n)) and the nodes cooperate in order to compute some function (i.e., perform a distributed task). We are interested in the number of rounds required to compute the function. We give two results regarding this model. First, we show that most boolean functions require ‸ L/B ‹ − 1 rounds to compute deterministically, and that even if we consider randomized protocols that are allowed to err, the expected running time remains [Formula: see text] for most boolean function. Second, trying to find explicit functions that require superconstant time, we consider the pointer chasing problem. In this problem, each node i is given an array Ai of length n whose entries are in [n], and the task is to find, for any [Formula: see text], the value of [Formula: see text]. We give a deterministic O(log n/ log log n) round protocol for this function using message size B = O(log n), a slight but non-trivial improvement over the O(log n) bound provided by standard “pointer doubling.” The question of an explicit function (or functionality) that requires super constant number of rounds in this setting remains, however, open.

Publisher

World Scientific Pub Co Pte Lt

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards a Complexity Theory for the Congested Clique;Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures;2018-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3