Affiliation:
1. Department of Electrical and Computer Engineering, Democritus University of Thrace Xanthi, GR 67100, Greece
Abstract
During the past decades, computer science experts were inspired from the study of biological organisms. Moreover, bio-inspired algorithms were produced that many times can give excellent solutions with low computational cost in complex engineering problems. In our case, the plasmodium of Physarum polycephalum is capable of finding the shortest path solution between two points in a labyrinth. In this study, we implement a Cellular Automata (CA) model in hardware, which attempts to describe and, moreover, mimic the behavior of the plasmodium in a maze. Beyond the successful implementation of the CA-based Physarum model in software, in order to take full advantage of the inherent parallelism of CA, we focus on a Field Programmable Gate Array (FPGA) implementation of the proposed model. Namely, two different implementations were considered here. Their difference is on the desired precision produced by the numerical representation of CA model parameters. Based on the corresponding results of the shortest path in the labyrinth,the modeling efficiency of both approaches was compared depending on the resulting error propagation. The presented FPGA implementations succeed to take advantage of the CA's inherit parallelism and improve the performance of the CA algorithm when compared with software in terms of computational speed and power consumption. As a result, the implementations presented here, can also be considered as a preliminary CA-based Physarum polycephalum IP core which produces a biological inspired solution to the shortest-path problem.
Publisher
World Scientific Pub Co Pte Lt
Subject
Hardware and Architecture,Theoretical Computer Science,Software
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献