Iso-Quality of Service: Fairly Ranking Servers for Real-Time Data Analytics

Author:

Georgakoudis Giorgis1,Gillan Charles2,Sayed Ahmed1,Spence Ivor2,Faloon Richard3,Nikolopoulos Dimitrios S.1

Affiliation:

1. School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, Northern Ireland BT7 1NN, United Kingdom

2. The Institute for Electronics, Communications and Information Technology, Queen’s University Belfast, Northern Ireland BT7 1NN, United Kingdom

3. Neueda Consulting Limited, Glenwood Business Centre, Springbank Industrial Estate Belfast, Northern Ireland BT17 0QL, United Kingdom

Abstract

We present a mathematically rigorous iso-Quality-of-Service (QoS) metric which relates the achievable quality of service (QoS) for a real-time analytics service with workload specific and use case specific performance and output quality requirements to the energy cost of offering the service by different server architectures. Using a new iso-QoS evaluation methodology, we scale server resources to meet QoS targets and directly rank the servers in terms of their energy-efficiency and by extension cost of ownership. Our metric and method are platform-independent and enable fair comparison of datacenter compute servers with significant architectural diversity, including micro-servers. We deploy our metric and methodology to compare three servers running financial option pricing workloads on real-life market data. We find that server ranking is sensitive to data inputs and desired QoS level and that although scale-out micro-servers can be up to two times more energy-efficient than conventional heavyweight servers for the same target QoS, they are still six times less energy efficient than high-performance computational accelerators.

Publisher

World Scientific Pub Co Pte Lt

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3