OPTIMAL TREE RANKING IS IN $\mathcal{NC}$

Author:

DE LA TORRE PILAR1,GREENLAW RAYMOND1,PRZYTYCKA TERESA M.2

Affiliation:

1. Department of Computer Science, University of New Hampshire, Durham, NH 03824, USA

2. Department of Computer Science, University of Riverside, Riverside, CA 92521, USA

Abstract

This paper places the optimal tree ranking problem in [Formula: see text]. A ranking is a labeling of the nodes with natural numbers such that if nodes u and v have the same label then there exists another node with a greater label on the path between them. An optimal ranking is a ranking in which the largest label assigned to any node is as small as possible among all rankings. An O(n) sequential algorithm is known. Researchers have speculated that this problem is P-complete. We show that for an n-node tree, one can compute an optimal ranking in O( log n) time using n2/ log n CREW PRAM processors. In fact, our ranking is super critical in that the label assigned to each node is absolutely as small as possible. We achieve these results by showing that a more general problem, which we call the super critical numbering problem, is in [Formula: see text]. No [Formula: see text] algorithm for the super critical tree ranking problem, approximate or otherwise, was previously known; the only known [Formula: see text] algorithm for optimal tree ranking was an approximate one.

Publisher

World Scientific Pub Co Pte Lt

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Maximizing the number of edges in optimal k-rankings;AKCE International Journal of Graphs and Combinatorics;2015-07-01

2. Greedy algorithms for generalized k-rankings of paths;Information Processing Letters;2010-10

3. Minimalk-rankings for prism graphs;Involve, a Journal of Mathematics;2010-08-11

4. Maximum minimal rankings of oriented trees;Involve, a Journal of Mathematics;2009-10-03

5. Minimal k-rankings and the rank number of;Information Processing Letters;2009-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3