Affiliation:
1. Department of Industrial and Systems Engineering, National University of Singapore, Singapore
2. Laboratoire IMAG-LMC Institut National Polytechnique de Grenoble Grenoble, France
Abstract
For discrete distribution with reliability function R(k), k = 1, 2,…,[R(k - 1) - R(k)]/R(k - 1) has been used as the definition of the failure rate function in the literature. However, this is different from that of the continuous case. This discrete version has the interpretation of a probability while it is known that a failure rate is not a probability in the continuous case. This discrete failure rate is bounded, and hence cannot be convex, e.g., it cannot grow linearly. It is not additive for series system while the additivity for series system is a common understanding in practice. In the paper, another definition of discrete failure rate function as In[R(k - 1)/R(k)] is introduced, and the above-mentioned problems are resolved. On the other hand, it is shown that the two failure rate definitions have the same monotonicity property. That is, if one is increasing/decreasing, the other is also increasing/decreasing. For other aging concepts, the new failure rate definition is more appropriate. The failure rate functions according to this definition are given for a number of useful discrete reliability functions.
Publisher
World Scientific Pub Co Pte Lt
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering,General Computer Science
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献