Surface Electromyography-Based Muscle Fatigue Analysis Using Binary and Weighted Visibility Graph Features

Author:

Makaram Navaneethakrishna1ORCID,Karthick P. A.2,Gopinath Venugopal3,Swaminathan Ramakrishnan1

Affiliation:

1. Department of Applied Mechanics, Biomedical Engineering Group, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India

2. Department of Instrumentation and Control, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India

3. Department of Instrumentation and Control Engineering, N.S.S. College of Engineering, Palakkad - 678008, APJ Abdulkalam Technological University Kerala, India

Abstract

Surface electromyography (sEMG) is a non-invasive technique to assess the electrical activity of contracting skeletal muscles. sEMG-based muscle fatigue detection plays a key role in sports medicine, ergonomics and rehabilitation. These signals are random, multicomponent, nonlinear and the degree of fluctuations is higher in dynamic contractions. Hence, the extraction of reliable biomarkers remains a challenging task. In this work, an attempt has been made to differentiate non-fatigue, and fatigue conditions using nonlinear techniques, namely, binary and weighted Visibility Graph (VG) features. For this, signals are recorded from the biceps brachii muscle of 52 healthy adult volunteers. These signals are preprocessed, and the contractions associated with the non-fatigue and fatigue conditions are segmented. The graph transformation is performed, and first-order and second-order statistics, along with entropy measures, are extracted from the degree distribution. Parametric and non-parametric machine learning methods are applied for the classification. The results show that the proposed VG approach is able to capture the fluctuations of the signals in non-fatigue and fatigue conditions. Further, all extracted features exhibit a significant difference with [Formula: see text] [Formula: see text]. Maximum accuracy of 89.1% is achieved with information gain selected features and extreme learning machines classifier. Additionally, weighted VG features perform better than the binary version with a difference in the accuracy of 5%. It appears that the proposed approach could be used in real-time implementation for the monitoring of muscle fatigue conditions.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,General Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3