The Noisy Expectation-Maximization Algorithm for Multiplicative Noise Injection

Author:

Osoba Osonde12,Kosko Bart2

Affiliation:

1. RAND Corporation, Santa Monica, CA 90401-3208, USA

2. Signal and Image Processing Institute, Electrical Engineering Department, University of Southern California, Los Angeles, CA 90089-2564, USA

Abstract

We generalize the noisy expectation-maximization (NEM) algorithm to allow arbitrary modes of noise injection besides just adding noise to the data. The noise must still satisfy a NEM positivity condition. This generalization includes the important special case of multiplicative noise injection. A generalized NEM theorem shows that all measurable modes of injecting noise will speed the average convergence of the EM algorithm if the noise satisfies a generalized NEM positivity condition. This noise-benefit condition has a simple quadratic form for Gaussian and Cauchy mixture models in the case of multiplicative noise injection. Simulations show a multiplicative-noise EM speed-up of more than [Formula: see text] in a simple Gaussian mixture model. Injecting blind noise only slowed convergence. A related theorem gives a sufficient condition for an average EM noise benefit for arbitrary modes of noise injection if the data model comes from the general exponential family of probability density functions. A final theorem shows that injected noise slows EM convergence on average if the NEM inequalities reverse and the noise satisfies a negativity condition.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,General Mathematics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Noise-boosted recurrent backpropagation;Neurocomputing;2023-11

2. Novel Non-Convex Regularization for Generating Double Threshold Value in Penalized Least Squares Regression;Fluctuation and Noise Letters;2022-09-21

3. Bayesian Bidirectional Backpropagation Learning;2021 International Joint Conference on Neural Networks (IJCNN);2021-07-18

4. Noise can speed backpropagation learning and deep bidirectional pretraining;Neural Networks;2020-09

5. High Capacity Neural Block Classifiers with Logistic Neurons and Random Coding;2020 International Joint Conference on Neural Networks (IJCNN);2020-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3