Affiliation:
1. Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND 58105 - 5285, USA
2. 629 Jack Stephens Drive, # 3105, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72212, USA
Abstract
The complexity of the atmosphere endows it with the property of turbulence by virtue of which, wind speed variations in the atmospheric boundary layer (ABL) exhibit highly irregular fluctuations that persist over a wide range of temporal and spatial scales. Despite the large and significant body of work on microscale turbulence, understanding the statistics of atmospheric wind speed variations has proved to be elusive and challenging. Knowledge about the nature of wind speed at ABL has far reaching impact on several fields of research such as meteorology, hydrology, agriculture, pollutant dispersion, and more importantly wind energy generation. In the present study, temporal wind speed records from twenty eight stations distributed through out the state of North Dakota (ND, USA), (~ 70,000 square-miles) and spanning a period of nearly eight years are analyzed. We show that these records exhibit a characteristic broad multifractal spectrum irrespective of the geographical location and topography. The rapid progression of air masses with distinct qualitative characteristics originating from Polar regions, Gulf of Mexico and Northern Pacific account for irregular changes in the local weather system in ND. We hypothesize that one of the primary reasons for the observed multifractal structure could be the irregular recurrence and confluence of these three air masses.
Publisher
World Scientific Pub Co Pte Lt
Subject
General Physics and Astronomy,General Mathematics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献