Anticorrosion Coatings Based on Zinc Phosphate and Zinc Molybdate Nanoparticles

Author:

Jalilov Almaz S.1,Marella Pooja2,Claverie Jerome P.3ORCID

Affiliation:

1. Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia

2. Materials Science Program, University of New-Hampshire, Durham, 03824, NH, USA

3. Department of Chemistry, Université de Sherbrooke, Sherbrooke, Qc, J1K2R1, Canada

Abstract

Zinc phosphate, and zinc molybdate nanoparticles were prepared from inverse microemulsions of inorganic salts stabilized by a mixture of nonionic and ionic surfactants in cyclohexane. The optimal ratios of surfactants to inorganic salts were found experimentally. The resulting nanoparticles were characterized by transmission electron microscopy, scanning electron microscopy, and X-ray diffraction. These nanoparticles were then mixed to epoxy formulations, which were applied to steel coupons. After accelerated aging, the electrochemical characteristics of the corrosion were analyzed by electrochemical impedance spectroscopy. The nanoparticles increase the corrosion resistance of the coating, indicating that the use of zinc phosphate and zinc molybdate nanoparticles offer a promising route for the mitigation of steel corrosion.

Funder

Office of Naval Research

Publisher

World Scientific Pub Co Pte Lt

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3