Graphical constructions for the sl(3), C2 and G2 invariants for virtual knots, virtual braids and free knots

Author:

Kauffman Louis Hirsch1,Manturov Vassily Olegovich23

Affiliation:

1. Department of Mathematics, Statistics and Computer Science (m/c 249), University of Illinois at Chicago, 851 South Morgan Street, Chicago, Illinois 60607-7045, USA

2. Bauman Moscow State Technical University, 2nd Baumanskaya St. 5/1, Moscow 105005, Russia

3. Laboratory of Quantum Topology, Chelyabinsk State University, Brat'ev Kashirinykh Street 129, Chelyabinsk 454001, Russia

Abstract

We construct graph-valued analogues of the Kuperberg sl(3) and G2 invariants for virtual knots. The restriction of the sl(3) and G2 invariants for classical knots coincides with the usual Homflypt sl(3) invariant and G2 invariants. For virtual knots and graphs these invariants provide new graphical information that allows one to prove minimality theorems and to construct new invariants for free knots (unoriented and unlabeled Gauss codes taken up to abstract Reidemeister moves). A novel feature of this approach is that some knots are of sufficient complexity that they evaluate themselves in the sense that the invariant is the knot itself seen as a combinatorial structure. The paper generalizes these structures to virtual braids and discusses the relationship with the original Penrose bracket for graph colorings.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A quantum invariant of links in T2× I with volume conjecture behavior;Algebraic & Geometric Topology;2023-06-14

2. The knot invariant associated to two-parameter quantum algebras;Journal of Algebra and Its Applications;2023-06-06

3. New Quantum Invariants of Planar Knotoids;Communications in Mathematical Physics;2023-05-29

4. Intersection formulas for parities on virtual knots;Journal of Knot Theory and Its Ramifications;2023-04

5. Planar diagrams for local invariants of graphs in surfaces;Journal of Knot Theory and Its Ramifications;2020-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3