ENUMERATING THE PRIME ALTERNATING KNOTS, PART I

Author:

RANKIN STUART1,FLINT ORTHO1,SCHERMANN JOHN1

Affiliation:

1. Department of Mathematics, University of Western Ontario, Canada

Abstract

The enumeration of prime knots has a long and storied history, beginning with the work of T. P. Kirkman [9,10], C. N. Little [14], and P. G. Tait [19] in the late 1800's, and continuing through to the present day, with significant progress and related results provided along the way by J. H. Conway [3], K. A. Perko [17, 18], M. B. Thistlethwaite [6, 8, 15, 16, 20], C. H. Dowker [6], J. Hoste [1, 8], J. Calvo [2], W. Menasco [15, 16], W. B. R. Lickorish [12, 13], J. Weeks [8] and many others. Additionally, there have been many efforts to establish bounds on the number of prime knots and links, as described in the works of O. Dasbach and S. Hougardy [4], D. J. A. Welsh [22], C. Ernst and D. W. Sumners [7], and C. Sundberg and M. Thistlethwaite [21] and others. In this paper, we provide a solution to part of the enumeration problem, in that we describe an efficient inductive scheme which uses a total of four operators to generate all prime alternating knots of a given minimal crossing size, and we prove that the procedure does in fact produce them all. The process proceeds in two steps, where in the first step, two of the four operators are applied to the prime alternating knots of minimal crossing size n to produce approximately 98% of the prime alternating knots of minimal crossing size n+1, while in the second step, the remaining two operators are applied to these newly constructed knots, thereby producing the remaining prime alternating knots of crossing size n+1. The process begins with the prime alternating knot of four crossings, the figure eight knot. In the sequel, we provide an actual implementation of our procedure, wherein we spend considerable effort to make the procedure efficient. One very important aspect of the implementation is a new way of encoding a knot. We are able to assign an integer array (called the master array) to a prime alternating knot in such a way that each regular projection, or plane configuration, of the knot can be constructed from the data in the array, and moreover, two knots are equivalent if and only if their master arrays are identical. A fringe benefit of this scheme is a candidate for the so-called ideal configuration of a prime alternating knot. We have used this generation scheme to enumerate the prime alternating knots up to and including those of 19 crossings. The knots up to and including 17 crossings produced by our generation scheme concurred with those found by M. Thistlethwaite, J. Hoste and J. Weeks (see [8]). The current implementation of the algorithms involved in the generation scheme allowed us to produce the 1,769,979 prime alternating knots of 17 crossings on a five node beowulf cluster in approximately 2.3 hours, while the time to produce the prime alternating knots up to and including those of 16 crossings totalled approximately 45 minutes. The prime alternating knots at 18 and 19 crossings were enumerated using the 48 node Compaq ES-40 beowulf cluster at the University of Western Ontario (we also received generous support from Compaq at the SC 99 conference). The cluster was shared with other users and so an accurate estimate of the running time is not available, but the generation of the 8,400,285 knots at 18 crossings was completed in 17 hours, and the generation of the 40,619,385 prime alternating knots at 19 crossings took approximately 72 hours. With the improvements that are described in the sequel, we anticipate that the knots at 19 crossings will be generated in not more than 10 hours on a current Pentium III personal computer equipped with 256 megabytes of main memory.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Paranemic Crossover DNA: There and Back Again;Chemical Reviews;2018-06-18

2. Topological Methods;Analysis of Quantised Vortex Tangle;2016-11-25

3. Topological Linkage of DNA Tiles Bonded by Paranemic Cohesion;ACS Nano;2015-09-23

4. Covalent Linkage of One-Dimensional DNA Arrays Bonded by Paranemic Cohesion;ACS Nano;2015-09-11

5. Self-Assembly of a Giant Molecular Solomon Link from 30 Subcomponents;Angewandte Chemie International Edition;2014-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3