Computable isomorphisms for certain classes of infinite graphs

Author:

Walker Hakim J.1

Affiliation:

1. Department of Mathematics, Harvard University, Cambridge MA 02139, USA

Abstract

We investigate (2,1):1 structures, which consist of a countable set [Formula: see text] together with a function [Formula: see text] such that for every element [Formula: see text] in [Formula: see text], [Formula: see text] maps either exactly one element or exactly two elements of [Formula: see text] to [Formula: see text]. These structures extend the notions of injection structures, 2:1 structures, and (2,0):1 structures studied by Cenzer, Harizanov, and Remmel, all of which can be thought of as infinite directed graphs. We look at various computability-theoretic properties of (2,1):1 structures, most notably that of computable categoricity. We say that a structure [Formula: see text] is computably categorical if there exists a computable isomorphism between any two computable copies of [Formula: see text]. We give a sufficient condition under which a (2,1):1 structure is computably categorical, and present some examples of (2,1):1 structures with different computability-theoretic properties.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3