CLASSIFICATION OF FLAT VIRTUAL PURE TANGLES

Author:

CHU KARENE1

Affiliation:

1. Department of Mathematics, University of Toronto, Fields Institute, Toronto Ontario, Canada

Abstract

Virtual knot theory, introduced by Kauffman [Virtual Knot theory, European J. Combin.20 (1999) 663–690, arXiv:math.GT/9811028], is a generalization of classical knot theory of interest because its finite-type invariant theory is potentially a topological interpretation [D. Bar-Natan, u, v, w-knots: Topology, Combinatorics and low and high algebra] of Etingof and Kazhdan's theory of quantization of Lie bi-algebras [Quantization of Lie Bialgebras, I, Selecta Math. (N.S.) 2 (1996) 1–41, arXiv:q-alg/9506005]. Classical knots inject into virtual knots [G. Kuperberg, What is Virtual Link? Algebr. Geom. Topol.3 (2003) 587–591, arXiv:math.GT/0208039], and flat virtual knots [V. O. Manturov, On free knots, preprint (2009), arXiv:0901.2214; On free knots and links, preprint (2009), arXiv:0902.0127] is the quotient of virtual knots which equates the real positive and negative crossings, and in this sense is complementary to classical knot theory within virtual knot theory. We completely classify flat virtual tangles with no closed components (pure tangles). This classification can be used as an invariant on virtual pure tangles and virtual braids.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3