Natural properties of the trunk of a knot

Author:

Davies Derek1,Zupan Alexander2ORCID

Affiliation:

1. Department of Mechanical Engineering, The University of Texas at Austin, Engineering Teaching Center II (ETC), 2200 Austin, TX 78712, USA

2. Department of Mathematics, University of Nebraska-Lincoln, 203 Avery Hall, P.O. Box 880130, Lincoln, NE 68588-0130, USA

Abstract

The trunk of a knot in [Formula: see text], defined by Makoto Ozawa, is a measure of geometric complexity similar to the bridge number or width of a knot. We prove that for any two knots [Formula: see text] and [Formula: see text], we have [Formula: see text], confirming a conjecture of Ozawa. Another conjecture of Ozawa asserts that any width-minimizing embedding of a knot [Formula: see text] also minimizes the trunk of [Formula: see text]. We produce several families of probable counterexamples to this conjecture.

Funder

Division of Mathematical Sciences

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Links, bridge number, and width trees;Journal of the Mathematical Society of Japan;2023-01-25

2. Combinatorial Minimal Surfaces in Pseudomanifolds and Other Complexes;Tokyo Journal of Mathematics;2020-12-01

3. Trunk of satellite and companion knots;Topology and its Applications;2020-03

4. Height, trunk and representativity of knots;Journal of the Mathematical Society of Japan;2019-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3