Algorithmic simplification of knot diagrams: New moves and experiments

Author:

Petronio Carlo1,Zanellati Adolfo2

Affiliation:

1. Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo, 5, 56127 PISA, Italy

2. Via Ravegnana 180, 48124 Ravenna, Italy

Abstract

This paper has an experimental nature and contains no new theorems. We introduce certain moves for classical knot diagrams that for all examples we have tested them on give a monotonic complete simplification. A complete simplification of a knot diagram [Formula: see text] is a sequence of moves that transform [Formula: see text] into a diagram [Formula: see text] with the minimal possible number of crossings for the isotopy class of the knot represented by [Formula: see text]. The simplification is monotonic if the number of crossings never increases along the sequence. Our moves are certain [Formula: see text] generalizing the classical Reidemeister moves [Formula: see text], and another one [Formula: see text] (together with a variant [Formula: see text]) aimed at detecting whether a knot diagram can be viewed as a connected sum of two easier ones. We present an accurate description of the moves and several results of our implementation of the simplification procedure based on them, publicly available on the web.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hard Diagrams of the Unknot;Experimental Mathematics;2023-02-07

2. A Suggestive Interface for Untangling Mathematical Knots;IEEE Transactions on Visualization and Computer Graphics;2021-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3