Affiliation:
1. Mathematics Department, University of Bologna, P.zza di Porta S. Donato, 5, 40126 Bologna, Italy
Abstract
In this paper we investigate the Alexander polynomial of (1,1)-knots, which are knots lying in a 3-manifold with genus one at most, admitting a particular decomposition. More precisely, we study the connections between the Alexander polynomial and a polynomial associated to a cyclic presentation of the fundamental group of an n-fold strongly-cyclic covering branched over the knot K, which we call the n-cyclic polynomial of K. In this way, we generalize to all (1,1)-knots, with the only exception of those lying in S2×S1, a result obtained by Minkus for 2-bridge knots and extended by the author and M. Mulazzani to the case of (1,1)-knots in S3. As corollaries some properties of the Alexander polynomial of knots in S3are extended to the case of (1,1)-knots in lens spaces.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献