Affiliation:
1. Medgar Evers College, The City University of New York, 1650 Bedford Avenue, Brooklyn, New York 11225, USA
Abstract
A (1,1) knot K in a 3-manifold M is a knot that intersects each solid torus of a genus 1 Heegaard splitting of M in a single trivial arc. Choi and Ko developed a parametrization of this family of knots by a four-tuple of integers, which they call Schubert's normal form. This paper presents an algorithm for constructing a genus 1 doubly-pointed Heegaard diagram compatible with K, given a Schubert's normal form for K. The construction, coupled with results of Ozsváth and Szabó, provides a practical way to compute knot Floer homology groups for (1,1) knots. The construction uses train tracks, and its method is inspired by the work of Goda, Matsuda, and Morifuji.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory