Affiliation:
1. Department of Mathematics, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
Abstract
O’Hara’s energies, introduced by Jun O’Hara, were proposed to answer the question what the canonical shape in a given knot type is, and were configured so that the less the energy value of a knot is, the “better” its shape is. The existence and regularity of minimizers has been well studied. In this paper, we calculate the first and second variational formulae of the [Formula: see text]-O’Hara energies and show absolute integrability, uniform boundedness, and continuity properties. Although several authors have already considered the variational formulae of the [Formula: see text]-O’Hara energies, their techniques do not seem to be applicable to the case [Formula: see text]. We obtain the variational formulae in a novel manner by extracting a certain function from the energy density. All of the [Formula: see text]-energies are made from this function, and by analyzing it, we obtain not only the variational formulae but also the estimates in several function spaces.
Funder
Japan Society for the Promotion of Science
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献