Affiliation:
1. Lafayette College, Easton, PA 18042, USA
Abstract
In earlier work we introduced the graph bracket polynomial of graphs with marked vertices, motivated by the fact that the Kauffman bracket of a link diagram D is determined by a looped, marked version of the interlacement graph associated to a directed Euler system of the universe graph of D. Here we extend the graph bracket to graphs whose vertices may carry different kinds of marks, and we show how multiply marked graphs encode interlacement with respect to arbitrary (undirected) Euler systems. The extended machinery brings together the earlier version and the graph-links of Ilyutko and Manturov [J. Knot Theory Ramifications18 (2009) 791–823]. The greater flexibility of the extended bracket also allows for a recursive description much simpler than that of the earlier version.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献