Reidemeister moves and groups

Author:

Manturov Vassily Olegovich1

Affiliation:

1. Bauman Moscow State Technical University and Laboratory of Quantum Topology, Chelyabinsk State University, Chelyabinsk, Russia

Abstract

Recently, the author discovered an interesting class of knot-like objects called free knots. These purely combinatorial objects are equivalence classes of Gauss diagrams modulo Reidemeister moves (the same notion in the language of words was introduced by Turaev [Topology of words, Proc. Lond. Math. Soc.95(3) (2007) 360–412], who thought all free knots to be trivial). As it turned out, these new objects are highly nontrivial, see [V. O. Manturov, Parity in knot theory, Mat. Sb.201(5) (2010) 65–110], and even admit nontrivial cobordism classes [V. O. Manturov, Parity and cobordisms of free knots, Mat. Sb.203(2) (2012) 45–76]. An important issue is the existence of invariants where a diagram evaluates to itself which makes such objects "similar" to free groups: An element has its minimal representative which "lives inside" any representative equivalent to it. In this paper, we consider generalizations of free knots by means of (finitely presented) groups. These new objects have lots of nontrivial properties coming from both knot theory and group theory. This connection allows one not only to apply group theory to various problems in knot theory but also to apply Reidemeister moves to the study of (finitely presented) groups. Groups appear naturally in this setting when graphs are embedded in surfaces.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3