Local-move identities for the ℤ[t,t−1]-Alexander polynomials of 2-links, the alinking number, and high-dimensional analogues

Author:

Ogasa Eiji1

Affiliation:

1. Computer Science, Meijigakuin University, Yokohama, Kanagawa 244-8539, Japan

Abstract

A well-known identity [Formula: see text] holds for three 1-links [Formula: see text], [Formula: see text], and [Formula: see text] which satisfy a famous local-move relation, where [Formula: see text] becomes the Alexander–Conway polynomial of [Formula: see text] if we let [Formula: see text]. We prove a new local-move identity for the [Formula: see text]-Alexander polynomials of 2-links, which is a 2-dimensional analogue of the 1-dimensional one. In the 1-dimensional link case there is a well-known relation between the Alexander–Conway polynomial and the linking number. As its 2-dimensional analogue, we find a relation between the [Formula: see text]-Alexander polynomials of 2-links and the alinking number of 2-links. We produce high-dimensional analogues of these results. Furthermore, we prove that in the 2-dimensional case we cannot normalize the [Formula: see text]-Alexander polynomials to be compatible with our identity but that in a high-dimensional case we can do that to be compatible with our new identity.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3