4-Move distance of knots

Author:

Kanenobu Taizo1,Takioka Hideo2ORCID

Affiliation:

1. Graduate School of Science, Osaka Metropolitan University, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

2. Faculty of Electrical, Information and Communication Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan

Abstract

A [Formula: see text]-move is a local change for knots and links which changes 4 half twists to 0 half twists or vice versa. In 1979, Yasutaka Nakanishi conjectured that every knot can be changed by [Formula: see text]-moves to the unknot. This is still an open problem. In this paper, we consider the [Formula: see text]-move distance of knots, which is the minimal number of [Formula: see text]-moves needed to deform one into the other. In particular, the [Formula: see text]-move unknotting number of a knot is the [Formula: see text]-move distance to the unknot. We give a table of the [Formula: see text]-move unknotting number of knots with up to nine crossings.

Funder

Japan Society for the Promotion of Science

Publisher

World Scientific Pub Co Pte Ltd

Subject

Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3