The Kauffman bracket ideal for genus-1 tangles

Author:

Abernathy Susan M.1

Affiliation:

1. Department of Mathematics, Angelo State University, San Angelo, TX, USA

Abstract

Given a compact oriented 3-manifold M in S3 with boundary, an (M, 2n)-tangle [Formula: see text] is a 1-manifold with 2n boundary components properly embedded in M. We say that [Formula: see text] embeds in a link L in S3 if [Formula: see text] can be completed to L by a 1-manifold with 2n boundary components exterior to M. The link L is called a closure of [Formula: see text]. We define the Kauffman bracket ideal of [Formula: see text] to be the ideal [Formula: see text] of ℤ[A, A-1] generated by the reduced Kauffman bracket polynomials of all closures of [Formula: see text]. If this ideal is non-trivial, then [Formula: see text] does not embed in the unknot. We give an algorithm for computing a finite list of generators for the Kauffman bracket ideal of any (S1 × D2, 2)-tangle, also called a genus-1 tangle, and give an example of a genus-1 tangle with non-trivial Kauffman bracket ideal. Furthermore, we show that if a single-component genus-1 tangle [Formula: see text] can be obtained as the partial closure of a (B3, 4)-tangle [Formula: see text], then [Formula: see text].

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3