Characterization of signed Gauss paragraphs and skew-symmetric graded matrices

Author:

Rodríguez-Nieto José Gregorio1

Affiliation:

1. Escuela de Matemáticas, Universidad Nacional de Colombia, Sede Medellín, Calle 59A N. 63-20, Medellín, Colombia

Abstract

In this paper, we use theory of embedded graphs on oriented and compact [Formula: see text]-surfaces to construct minimal realizations of signed Gauss paragraphs. We prove that the genus of the ambient surface of these minimal realizations can be seen as a function of the maximum number of Carter’s circles. For the case of signed Gauss words, we use a generating set of [Formula: see text], given in [G. Cairns and D. Elton, The Planarity problem for signed Gauss world, J. Knots Theor. Ramif. 2(4) (1993) 359–367], and the intersection pairing of immersed [Formula: see text]-normal curves to present a short solution of the signed Gauss word problem. We relate this solution with the one given by Cairns and Elton. Moreover, we define the join operation on signed Gauss paragraphs to produce signed Gauss words such that both can be realized on the same minimal genus [Formula: see text]-surface. We connect the characterization of signed Gauss paragraph with the recognition virtual links problem. Also we present a combinatorial algorithm to compute, in an easier way, skew-symmetric graded matrices [V. Turaev, Cobordism of knots on surfaces, J. Topol. 1(2) (2008) 285–305] for virtual knots through the concept of triplets [M. Toro and J. Rodríguez, Triplets associated to virtual knot diagrams, Rev. Integración (2011)]. Therefore, we can prove that the Kishino’s knot is not classical, moreover, we prove that the virtual knots of the family [Formula: see text] given in [H. A. Dye, Virtual knots undetected by [Formula: see text] and [Formula: see text]-strand bracket polynomials, Topol. Appl. 153 (2005) 141–160] are not classical knots.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3