Amphicheirality of ribbon 2-knots

Author:

Yasuda Tomoyuki1

Affiliation:

1. Department of Liberal Studies, National Institute of Technology, Nara College, Yamatokoriyama, Nara 639-1080, Japan

Abstract

For any classical knot [Formula: see text], we can construct a ribbon [Formula: see text]-knot [Formula: see text] by spinning an arc removed a small segment from [Formula: see text] about [Formula: see text] in [Formula: see text]. A ribbon [Formula: see text]-knot is an embedded [Formula: see text]-sphere in [Formula: see text]. If [Formula: see text] has an [Formula: see text]-crossing presentation, by spinning this, we can naturally construct a ribbon presentation with [Formula: see text] ribbon crossings for [Formula: see text]. Thus, we can define naturally a notion on ribbon [Formula: see text]-knots corresponding to the crossing number on classical knots. It is called the ribbon crossing number. On classical knots, it was a long-standing conjecture that any odd crossing classical knot is not amphicheiral. In this paper, we show that for any odd integer [Formula: see text] there exists an amphicheiral ribbon [Formula: see text]-knot with the ribbon crossing number [Formula: see text].

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3