Twisted Alexander polynomials of 2-bridge knots associated to dihedral representations

Author:

Hirasawa Mikami1ORCID,Murasugi Kunio2

Affiliation:

1. Department of Mathematics, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan

2. Department of Mathematics, University of Toronto, Toronto, ON M5S2E4, Canada

Abstract

Let [Formula: see text] be a non-abelian semi-direct product of a cyclic group [Formula: see text] and an elementary abelian [Formula: see text]-group [Formula: see text] of order [Formula: see text], [Formula: see text] being a prime and [Formula: see text]. Suppose that the knot group [Formula: see text] of a knot [Formula: see text] in the [Formula: see text]-sphere is represented on [Formula: see text]. Then we conjectured (and later proved) that the twisted Alexander polynomial [Formula: see text] associated to [Formula: see text] is of the form: [Formula: see text], where [Formula: see text] is the Alexander polynomial of [Formula: see text] and [Formula: see text] is an integer polynomial in [Formula: see text]. In this paper, we present a proof of the following. For a [Formula: see text]-bridge knot [Formula: see text] in [Formula: see text], if [Formula: see text] and [Formula: see text], then [Formula: see text] is written as [Formula: see text], where [Formula: see text] is the set of [Formula: see text]-bridge knots whose knot groups map on that of [Formula: see text] with [Formula: see text] odd.

Funder

JSPS KAKENHI

NSERC

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3