Affiliation:
1. Department of Mathematics, Pusan National University, Busan 609-735, Korea
Abstract
H. Dye defined the parity mapping for a virtual knot diagram, which is a map from the set of real crossings of the diagram to ℤ. The notion generalizes the parity which is studied extensively by V. Manturov. The mapping induces the ith writhe (i ∈ ℤ\{0}) which is an invariant of the representing virtual knot. She applied the parity mapping to introduce a grade to the Henrich S-invariant for a virtual knot, and showed that the invariants are Vassiliev invariants of degree one. Following it, we define the parity mappings for a virtual link diagram, and define the similar invariants as above for a virtual link by using the parity mappings. We show that some of the invariants are Vassiliev invariants of degree one. We also checked necessary conditions for invertibility and amphicheirality via the invariants.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory