Affiliation:
1. Department of Mathematics, University of South Florida, Tampa, FL 33620, USA
2. Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109-2800, USA
Abstract
A heap is a set with a certain ternary operation that is self-distributive and exemplified by a group with the operation [Formula: see text]. We introduce and investigate framed link invariants using heaps. In analogy with the knot group, we define the fundamental heap of framed links using group presentations. The fundamental heap is determined for some classes of links such as certain families of torus and pretzel links. We show that for these families of links there exist epimorphisms from fundamental heaps to Vinberg and Coxeter groups, implying that corresponding groups are infinite. A relation to the Wirtinger presentation is also described. The cocycle invariant is defined using ternary self-distributive (TSD) cohomology, by means of a state sum that uses ternary heap [Formula: see text]-cocycles as weights. This invariant corresponds to a rack cocycle invariant for the rack constructed by doubling of a heap, while colorings can be regarded as heap morphisms from the fundamental heap. For the construction of the invariant, first computational methods for the heap cohomology are developed. It is shown that the cohomology splits into two types, called degenerate and nondegenerate, and that the degenerate part is one-dimensional. Subcomplexes are constructed based on group cosets, that allow computations of the nondegenerate part. Computations of the cocycle invariants are presented using the cocycles constructed, and conversely, it is proved that the invariant values can be used to derive algebraic properties of the cohomology.
Funder
National Science Foundation
Eesti Teadusagentuur
Publisher
World Scientific Pub Co Pte Ltd
Subject
Algebra and Number Theory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献