Affiliation:
1. Department of Mathematics and Philosophy, Western Illinois University - Quad Cities, Moline, IL 61265, USA
2. Department of Mathematics, University of Iowa, Iowa City, IA 52242, USA
Abstract
A ribbon is a smooth mapping (possibly self-intersecting) of an annulus [Formula: see text] in 3-space having constant width [Formula: see text]. Given a regular parametrization [Formula: see text], and a smooth unit vector field [Formula: see text] based along [Formula: see text], for a knot [Formula: see text], we may define a ribbon of width [Formula: see text] associated to [Formula: see text] and [Formula: see text] as the set of all points [Formula: see text], [Formula: see text]. For large [Formula: see text], ribbons, and their outer edge curves, may have self-intersections. In this paper, we analyze how the knot type of the outer ribbon edge [Formula: see text] relates to that of the original knot [Formula: see text]. Generically, as [Formula: see text], there is an eventual constant knot type. This eventual knot type is one of only finitely many possibilities which depend just on the vector field [Formula: see text]. The particular knot type within the finite set depends on the parametrized curves [Formula: see text], [Formula: see text], and their interactions. We demonstrate a way to control the curves and their parametrizations so that given two knot types [Formula: see text] and [Formula: see text], we can find a smooth ribbon of constant width connecting curves of these two knot types.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献