Affiliation:
1. Department of Mathematics, Monmouth University, West Long Branch, NJ 07764, USA
Abstract
Every classical knot is band-pass equivalent to the unknot or the trefoil. The band-pass class of a knot is a concordance invariant. Every ribbon knot, for example, is band-pass equivalent to the unknot. Here we introduce the long virtual knot concordance group [Formula: see text]. It is shown that for every concordance class [Formula: see text], there is a [Formula: see text] that is not band-pass equivalent to [Formula: see text] and an [Formula: see text] that is not band-pass equivalent to either the long unknot or any long trefoil. This is accomplished by proving that [Formula: see text] is a band-pass invariant but not a concordance invariant of long virtual knots, where [Formula: see text] and [Formula: see text] generate the degree two Polyak group for long virtual knots.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献