AN OBSTRUCTION TO SLICING ITERATED BING DOUBLES

Author:

VAN COTT CORNELIA A.1

Affiliation:

1. University of San Francisco, 2130 Fulton Street, San Francisco CA 94117, USA

Abstract

Recent advances in understanding slicing properties of Bing doubles of knots have depended on properties of iterated covering links. We expand and refine this covering link calculus. Our main application here is a simplified proof of the following result of Cha and Kim: If the iterated Bing double of a knot K is slice, then K is algebraically slice. Further applications are included in joint work with Livingston studying 4-genera of Bing doubles. The techniques also appear in the work of Levine studying mixed Bing-Whitehead doubles.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Reference15 articles.

1. A Homeomorphism Between the 3-Sphere and the Sum of Two Solid Horned Spheres

2. On slice knots in dimension three

3. A. J. Casson and C. McA. Gordon, À la Recherche de la Topologie Perdue, Progress in Mathematics 62 (Birkhäuser Boston, Boston, MA, 1986) pp. 181–199.

4. THE EFFECT OF MUTATION ON LINK CONCORDANCE, 3-MANIFOLDS, AND THE MILNOR INVARIANTS

5. Covering link calculus and iterated Bing doubles

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3