Octahedral developing of knot complement II: Ptolemy coordinates and applications

Author:

Kim Hyuk1,Kim Seonhwa2ORCID,Yoon Seokbeom3

Affiliation:

1. Department of Mathematical Sciences, Seoul National University, Seoul 08826, Korea

2. Department of Mathematics, University of Seoul, Seoul 02504, Korea

3. International Center for Mathematics, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, P. R. China

Abstract

It is known that a knot complement (minus two points) decomposes into ideal octahedra with respect to a given knot diagram. In this paper, we study the Ptolemy variety for such an octahedral decomposition in perspective of Thurston’s gluing equation variety. More precisely, we compute explicit Ptolemy coordinates in terms of segment and region variables, the coordinates of the gluing equation variety motivated from the volume conjecture. As a consequence, we present an explicit formula for computing the obstruction to lifting a boundary-parabolic [Formula: see text]-representation to boundary-unipotent [Formula: see text]-representation. We also present a diagrammatic algorithm to compute a holonomy representation of the knot group.

Funder

National Research Foundation (NRF) of Korea

Basic Science Research Program through the NRF of Korea

Institute for Basic Science

Publisher

World Scientific Pub Co Pte Ltd

Subject

Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3