Affiliation:
1. Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
Abstract
Khovanov homology of a link and chromatic graph homology are known to be isomorphic in a range of homological gradings that depend on the girth of a graph. We discuss patterns shared by these two homology theories. In particular, we improve the bounds for the homological span of chromatic homology by Helme–Guizon, Przytycki and Rong. An explicit formula for the rank of the third chromatic homology group on the main diagonal is given and used to compute the corresponding Khovanov homology group and the fourth coefficient of the Jones polynomial for links with certain diagrams.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献