On invariants of surfaces in the 3-sphere

Author:

Kurihara Hiroaki1

Affiliation:

1. Artificial Intelligence Laboratory, Fujitsu Research, Fujitsu, Japan

Abstract

In this paper we study isotopy classes of closed connected orientable surfaces in the standard [Formula: see text]-sphere. Such a surface splits the [Formula: see text]-sphere into two compact connected submanifolds, and by using their Heegaard splittings, we obtain a [Formula: see text]-component handlebody-link. In this paper, we first show that the equivalence class of such a 2-component handlebody-link up to attaching trivial [Formula: see text]-handles can recover the original surface. Therefore, we can reduce the study of surfaces in the [Formula: see text]-sphere to that of [Formula: see text]-component handlebody-links up to stabilizations. Then, by using [Formula: see text]-families of quandles, we construct invariants of [Formula: see text]-component handlebody-links up to attaching trivial [Formula: see text]-handles, which lead to invariants of surfaces in the [Formula: see text]-sphere. In order to see the effectiveness of our invariants, we will also show that our invariants can distinguish certain explicit surfaces in the [Formula: see text]-sphere.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Algebra and Number Theory

Reference20 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3