Affiliation:
1. Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8914, Japan
Abstract
Khovanov homology is a categorification of the Jones polynomial, so it may be seen as a kind of quantum invariant of knots and links. Although polynomial quantum invariants are deeply involved with Vassiliev (aka. finite type) invariants, the relation remains unclear in case of Khovanov homology. Aiming at it, in this paper, we discuss a categorified version of Vassiliev skein relation on Khovanov homology. More precisely, we will show that the “genus-one” operation gives rise to a crossing change on Khovanov complexes. Invariance under Reidemeister moves turns out, and it enables us to extend Khovanov homology to singular links. We then see that a long exact sequence of Khovanov homology groups categorifies Vassiliev skein relation for the Jones polynomials. In particular, the Jones polynomial is recovered even for singular links. We in addition discuss the FI relation on Khovanov homology.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献