ON THE OTHER SIDE OF THE BIALGEBRA OF CHORD DIAGRAMS

Author:

TOURTCHINE V.1

Affiliation:

1. Université Catholique de Louvain, Independent University of Moscow, Russia

Abstract

In this paper we describe complexes whose homologies are naturally isomorphic to the first term of the Vassiliev spectral sequence computing (co)homology of the spaces of long knots in ℝd, d ≥ 3. The first term of the Vassiliev spectral sequence is concentrated in some angle of the second quadrant. In homological case the lower line of this term is the bialgebra of chord diagrams (or its superanalog if d is even). We prove in this paper that the groups of the upper line are all trivial. In the same bigradings we compute the homology groups of the complex spanned only by strata of immersions in the discriminant (maps having only self-intersections). We interpret the obtained groups as subgroups of the (co)homology groups of the double loop space of a (d - 1)-dimensional sphere. In homological case the last complex is the normalized Hochschild complex of the Poisson or Gerstenhaber (depending on parity of d) algebras operad. The upper line bigradings are spanned by the operad of Lie algebras. To describe the cycles in these bigradings, we introduce new homological operations on Hochschild complexes. We show in future work that these operations are in fact the Dyer–Lashof–Cohen operations induced by the action of the singular chains operad of little squares on Hochschild complexes.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3