Affiliation:
1. Université Catholique de Louvain, Independent University of Moscow, Russia
Abstract
In this paper we describe complexes whose homologies are naturally isomorphic to the first term of the Vassiliev spectral sequence computing (co)homology of the spaces of long knots in ℝd, d ≥ 3. The first term of the Vassiliev spectral sequence is concentrated in some angle of the second quadrant. In homological case the lower line of this term is the bialgebra of chord diagrams (or its superanalog if d is even). We prove in this paper that the groups of the upper line are all trivial. In the same bigradings we compute the homology groups of the complex spanned only by strata of immersions in the discriminant (maps having only self-intersections). We interpret the obtained groups as subgroups of the (co)homology groups of the double loop space of a (d - 1)-dimensional sphere. In homological case the last complex is the normalized Hochschild complex of the Poisson or Gerstenhaber (depending on parity of d) algebras operad. The upper line bigradings are spanned by the operad of Lie algebras. To describe the cycles in these bigradings, we introduce new homological operations on Hochschild complexes. We show in future work that these operations are in fact the Dyer–Lashof–Cohen operations induced by the action of the singular chains operad of little squares on Hochschild complexes.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献