Affiliation:
1. Department of Mathematical and Physical Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
Abstract
Rectangular diagrams of links are link diagrams in the plane ℝ2 such that they are composed of vertical line segments and horizontal line segments and vertical segments go over horizontal segments at all crossings. Cromwell and Dynnikov showed that rectangular diagrams of links are useful for deciding whether a given link is split or not, and whether a given knot is trivial or not. We show in this paper that an oriented link diagram D with c(D) crossings and s(D) Seifert circles can be deformed by an ambient isotopy of ℝ2 into a rectangular diagram with at most c(D) + 2s(D) vertical segments, and that, if D is connected, at most 2c(D) + 2 - w(D) vertical segments, where w(D) is a certain non-negative integer. In order to obtain these results, we show that the system of Seifert circles and arcs substituting for crossings can be deformed by an ambient isotopy of ℝ2 so that Seifert circles are rectangles composed of two vertical line segments and two horizontal line segments and arcs are vertical line segments, and that we can obtain a single circle from a connected link diagram by smoothing operations at the crossings regardless of orientation.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory