Rectangular Seifert circles and arcs system

Author:

Ando Tatsuo1,Hayashi Chuichiro1,Hayashi Miwa1

Affiliation:

1. Department of Mathematical and Physical Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan

Abstract

Rectangular diagrams of links are link diagrams in the plane ℝ2 such that they are composed of vertical line segments and horizontal line segments and vertical segments go over horizontal segments at all crossings. Cromwell and Dynnikov showed that rectangular diagrams of links are useful for deciding whether a given link is split or not, and whether a given knot is trivial or not. We show in this paper that an oriented link diagram D with c(D) crossings and s(D) Seifert circles can be deformed by an ambient isotopy of ℝ2 into a rectangular diagram with at most c(D) + 2s(D) vertical segments, and that, if D is connected, at most 2c(D) + 2 - w(D) vertical segments, where w(D) is a certain non-negative integer. In order to obtain these results, we show that the system of Seifert circles and arcs substituting for crossings can be deformed by an ambient isotopy of ℝ2 so that Seifert circles are rectangles composed of two vertical line segments and two horizontal line segments and arcs are vertical line segments, and that we can obtain a single circle from a connected link diagram by smoothing operations at the crossings regardless of orientation.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3