Affiliation:
1. Department of Mathematics, College of Natural Sciences, Kyungpook National University, Daegu, Korea
2. Department of Fundamental Sciences, Bauman Moscow State Technical University, Moscow, Russia
Abstract
In 1987, Przytyski and Traczyk introduced an algebraic structure, called a Conway algebra, and constructed an invariant of oriented links, which is a generalization of the HOMFLY-PT polynomial invariant. In 2018, Kim generalized a Conway algebra, which is an algebraic structure with two skein relations, which is called a generalized Conway algebra. In 2017, Joung, Kamada, Kawauchi and Lee constructed a polynomial invariant of oriented surface-links by using marked graph diagrams. In this paper, we will introduce generalizations [Formula: see text] and [Formula: see text] of a Conway algebra and a generalized Conway algebra, which are called a marked Conway algebra and a generalized marked Conway algebra, respectively. We will construct invariants valued in [Formula: see text] and [Formula: see text] for oriented marked graphs and oriented surface-links by applying binary operations to classical crossings and marked vertices via marked graph diagrams. The polynomial invariant of oriented surface-links is obtained from the invariant valued in the marked Conway algebra with additional conditions.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory