On invariants for surface-links in entropic magmas via marked graph diagrams

Author:

Choi Seonmi1ORCID,Kim Seongjeong2

Affiliation:

1. Nonlinear Dynamics and Mathematical Application Center, Kyungpook National University, Daegu 41566, Republic of Korea

2. Department of Mathematics, Jilin University, Changchun 130012, China

Abstract

Niebrzydowski and Przytycki defined a Kauffman bracket magma and constructed the invariant [Formula: see text] of framed links in [Formula: see text]-space. The invariant is closely related to the Kauffman bracket polynomial. The normalized bracket polynomial is obtained from the Kauffman bracket polynomial by the multiplication of indeterminate and it is an ambient isotopy invariant for links. In this paper, we reformulate the multiplication by using a map from the set of framed links to a Kauffman bracket magma in order that [Formula: see text] is invariant for links in [Formula: see text]-space. We define a generalization of a Kauffman bracket magma, which is called a marked Kauffman bracket magma. We find the conditions to be invariant under Yoshikawa moves except the first one and use a map from the set of admissible marked graph diagrams to a marked Kauffman bracket magma to obtain the invariant for surface-links in [Formula: see text]-space.

Funder

National Research Foundation of Kore

Russian Foundation for Basic Research

Publisher

World Scientific Pub Co Pte Ltd

Subject

Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3