Distinguishing the generalized knot groups of square and granny knot analogues

Author:

Al Fran Howida1,Tuffley Christopher1

Affiliation:

1. School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand

Abstract

Given a knot [Formula: see text], we may construct a group [Formula: see text] from the fundamental group of [Formula: see text] by adjoining an [Formula: see text]th root of the meridian that commutes with the corresponding longitude. For [Formula: see text] these “generalized knot groups” determine [Formula: see text] up to reflection. The second author has shown that for [Formula: see text], the generalized knot groups of the square and granny knots can be distinguished by counting homomorphisms into a suitably chosen finite group. We extend this result to certain generalized knot groups of square and granny knot analogues [Formula: see text], [Formula: see text], constructed as connected sums of [Formula: see text]-torus knots of opposite or identical chiralities. More precisely, for coprime [Formula: see text] and [Formula: see text] satisfying a coprimality condition with [Formula: see text] and [Formula: see text], we construct an explicit finite group [Formula: see text] (depending on [Formula: see text], [Formula: see text] and [Formula: see text]) such that [Formula: see text] and [Formula: see text] can be distinguished by counting homomorphisms into [Formula: see text]. The coprimality condition includes all [Formula: see text] coprime to [Formula: see text]. The result shows that the difference between these two groups can be detected using a finite group.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Reference9 articles.

1. De Gruyter Studies in Mathematics extended edition;Burde G.,2014

2. Representations of the braid group by automorphisms of groups, invariants of links, and Garside groups

3. Knots are determined by their complements

4. The classification of Wada-type representations of braid groups

5. Encyclopedia of Mathematics and its Applications;Lidl R.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3