Parallel Simultaneous Perturbation Optimization

Author:

Alaeddini Atiye1,Klein Daniel J.1

Affiliation:

1. Institute for Disease Modeling, Bellevue, Washington 98004, USA

Abstract

Stochastic computer simulations enable users to gain new insights into complex physical systems. Optimization is a common problem in this context: users seek to find model inputs that maximize the expected value of an objective function. The objective function, however, is time-intensive to evaluate, and cannot be directly measured. Instead, the stochastic nature of the model means that individual realizations are corrupted by noise. More formally, we consider the problem of optimizing the expected value of an expensive black-box function with continuously-differentiable mean, from which observations are corrupted by Gaussian noise. We present parallel simultaneous perturbation optimization (PSPO), which extends a well-known stochastic optimization algorithm, simultaneous perturbation stochastic approximation, in several important ways. Our modifications allow the algorithm to fully take advantage of parallel computing resources, like high-performance cloud computing. The resulting PSPO algorithm takes fewer time-consuming iterations to converge, automatically chooses the step size, and can vary the error tolerance by step. Theoretical results are supported by a numerical example.

Publisher

World Scientific Pub Co Pte Lt

Subject

Management Science and Operations Research,Management Science and Operations Research

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Correlated Queues with Inter-Arrival Times Depending on Service Times;Asia-Pacific Journal of Operational Research;2023-06-30

2. Real-Time Infectious Disease Modeling to Inform Emergency Public Health Decision Making;Annual Review of Public Health;2022-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3