A HYBRID GENETIC ALGORITHM FOR THE EARLY/TARDY SCHEDULING PROBLEM

Author:

VALENTE JORGE M. S.1,GONÇALVES JOSÉ FERNANDO1,ALVES RUI A. F. S.1

Affiliation:

1. Faculdade de Economia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-464 Porto, Portugal

Abstract

In this paper, we present a hybrid genetic algorithm for a version of the early/tardy scheduling problem in which no unforced idle time may be inserted in a sequence. The chromosome representation of the problem is based on random keys. The genetic algorithm is used to establish the order in which the jobs are initially scheduled, and a local search procedure is subsequently applied to detect possible improvements. The approach is tested on a set of randomly generated problems and compared with existing efficient heuristic procedures based on dispatch rules and local search. The computational results show that this new approach, although requiring slightly longer computational times, is better than the previous algorithms in terms of solution quality.

Publisher

World Scientific Pub Co Pte Lt

Subject

Management Science and Operations Research,Management Science and Operations Research

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Hybrid Approach with BRKGA and Data Mining for the Early/Tardy Scheduling Problem;2024 IEEE Congress on Evolutionary Computation (CEC);2024-06-30

2. Biased random-key genetic algorithms: A review;European Journal of Operational Research;2024-03

3. A cooperative coevolutionary algorithm approach to the no-wait job shop scheduling problem;Expert Systems with Applications;2022-05

4. Just-in-Time Precast Production Scheduling Using Dominance Rule-Based Genetic Algorithm;IEEE Transactions on Neural Networks and Learning Systems;2022

5. Random-Key Genetic Algorithms;Handbook of Heuristics;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3