OPTIMAL DESIGN OF A MULTI-STATE WEIGHTED SERIES-PARALLEL SYSTEM USING PHYSICAL PROGRAMMING AND GENETIC ALGORITHMS

Author:

LI WEI1,ZUO MING J.2,MOGHADDASS RAMIN2

Affiliation:

1. Citigroup, 33 Canada Square, Canary Wharf, London E14 5LB, UK

2. Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, T6G2G8, Canada

Abstract

In this paper, we report a study of the reliability optimal design of multi-state weighted series-parallel systems. Such a system and its components are capable of assuming a whole range of levels of performance, varying from perfect functioning to complete failure. There is a component utility corresponding to each component state. This system model is more general than the traditional binary series-parallel system model. The so-called component selection reliability optimal design problem which involves selection of components with known reliability characteristics and cost characteristics has been widely studied. However, the problem of determining system cost and system utility based on the relationships between component reliability, cost and utility has not been adequately addressed. We call it optimal component design reliability problem which has been studied in one of our former papers and continued in this paper for the multi-state weighted series-parallel systems. Furthermore, comparing to the traditional single-objective optimization model, the optimization model we proposed in this paper is a multi-objective optimization model which is used to maximize expected system performance utility and system reliability while minimizing investment system cost simultaneously. Genetic algorithm is used to solve the proposed physical programming based optimization model. An example is used to illustrate the flexibility and effectiveness of the proposed approach over the single-objective optimization method.

Publisher

World Scientific Pub Co Pte Lt

Subject

Management Science and Operations Research,Management Science and Operations Research

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3