Affiliation:
1. Department of Mechanical Engineering, Faculty of Engineering, Ahmadu Bello University, Zaria, Nigeria
Abstract
In this study, a solar absorption air conditioning system has been modeled simulated and optimized for an office block covering a total floor area of 90[Formula: see text]m2using the TRNSYS 16 software. Meteorological data over a period of a typical year for Zaria in Nigeria where the office block is located was used in the simulation and optimization. The hourly cooling energy demand of the office block for the whole year was simulated using the TRNSYS sub program TRNbuild. The peak cooling energy demand was used to size the components of the solar absorption air conditioning system. Based on the initial sizes, a TRNSYS model of the air conditioning system was developed. The simulation and optimization process was done by employing a monthly average data approach in which the TRNSYS software was combined with Microsoft excel. The simulation was done on an hourly time step, optimization was done by studying effect of varying system component sizes on performance indices: coefficient of performance (COP), solar coefficient of performance (SCOP) and solar fraction (SF). Results indicate that the system is capable of attaining an average annual SF of 0.79 in the given location.
Publisher
Springer Science and Business Media LLC
Subject
Fluid Flow and Transfer Processes,Renewable Energy, Sustainability and the Environment,Control and Systems Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献