EXERGETIC ANALYSIS AND ASSESSMENT OF HYBRID REFRIGERATION SYSTEM FOR DAIRY APPLICATIONS

Author:

ANAND S.1,GUPTA A.1,TYAGI S. K.2

Affiliation:

1. School of Energy Management, Shri Mata Vaishno Devi University, Katra 182320, J&K, India

2. Sardar Swaran Singh, National Institute of Renewable Energy, Kapurthala 144601, Punjab, India

Abstract

The application of biogas powered refrigeration system is being studied because of many folds increase in the cost of conventional fuels. This paper presents a numerical study of biogas operated ammonia–water hybrid vapor compression absorption refrigeration system for onsite dairy cooling applications. This system involves the compressor between the generator and condenser and use biogas (generated from the cattle dung) fired boiler to heat water which acts as an energy source for generator in the hybrid system. The variation of performance parameters such as heat load of different components, exergy loss, COPcooling, COPheating and exergy efficiency are studied with varying generator temperature. The results indicate that COPcooling as well COPheating values are in the range of 0.1125–0.2159 and 1.112–1.169, respectively, for the same variation in the generator temperature from 65°C to 130°C. The work done by the compressor is also calculated and found to be decreasing with an increase in the condenser, evaporator and generator temperature. The effect of the ambient temperature on the exergy loss in different components is also studied in the analysis and the results revealed that the maximum exergy loss is found in the generator and it is found to be the lowest in compressor.

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,Renewable Energy, Sustainability and the Environment,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3