Evaporation Heat Transfer and Pressure Drop Characteristics of R32 Inside a Multiport Tube with Microfins

Author:

Jige Daisuke1,Kikuchi Shogo2,Eda Hikaru2,Inoue Norihiro1,Koyama Shigeru3

Affiliation:

1. Tokyo University of Marine Science and Technology, 2-1-6 Etchujima, Koto-ku, Tokyo 135-8533, Japan

2. Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 2-1-6 Etchujima, Koto-ku, Tokyo 135-8533, Japan

3. International Institute for Carbon-Neutral Energy Research, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

Abstract

This study investigated the evaporation heat transfer and pressure drop characteristics of R32 in a horizontal multiport tube consisting of rectangular minichannels with straight microfins. The heat transfer coefficient and pressure drop were measured for a mass velocity range of 50–400[Formula: see text]kgm[Formula: see text]s[Formula: see text] and heat flux range of 5–20[Formula: see text]kWm[Formula: see text] at a saturation temperature of 15[Formula: see text]C. The frictional pressure drop during an adiabatic two-phase flow was also measured for a mass velocity range of 50–400[Formula: see text]kgm[Formula: see text]s[Formula: see text] and quality range of 0.1–0.9 at the same saturation temperature. The heat transfer coefficient increased with an increasing quality owing to the increase in forced convection. The dryout inception quality increased with the increase in mass velocity. The effects of heat flux on the heat transfer coefficient were small, except in a high-quality region. The heat transfer coefficient in a multiport tube with microfins was higher than that in a multiport tube without microfins in a high-quality region at a mass velocity of 200[Formula: see text]kgm[Formula: see text]s[Formula: see text] and in a low-quality region at a mass velocity of 400[Formula: see text]kgm[Formula: see text]s[Formula: see text]. The effects of mass velocity and microfins on the frictional pressure drop were clarified. It is suspected that the effects of a microfin on the frictional pressured drop can be considered using the hydraulic diameter. The frictional pressure drop was shown to be in good agreement with previous correlations.

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,Renewable Energy, Sustainability and the Environment,Control and Systems Engineering

Reference7 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3