Review: General Issues and Correlations for Predicting Flow Boiling Heat Transfer Coefficients in Micro-Scale Channels

Author:

Park Chang Yong1

Affiliation:

1. Department of Mechanical System Design Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea

Abstract

A review study was performed for basic heat transfer mechanism and quantitative analysis of correlations for flow boiling heat transfer in micro-scale channels. Several criteria for determining threshold diameter for micro-scale channels were discussed and the concept of confinement number was commented. The distinctive feature of flow boiling in micro-scale channels were considered and it was found out that the effect of the heat flux, latent heat, viscous force, surface tension, and inertial force was more significant. Important dimensionless parameters were summarized and it was pointed out that the boiling number, capillary number, and Weber number could be expected to play important roles at flow boiling in micro-scale channels. 17 correlations for flow boiling in micro-scale channels were reviewed in this study, and they were categorized by three types of correlations such as an equivalent Nusselt number correlation, a correlation with superposition of nucleate and convection boiling mechanism, and a flow pattern-based correlation. The predicted values by the correlations were compared with 536 experimental data from four different literatures and a correlation with smallest prediction errors was found. Some correlations showed distinct trends of convection heat transfer coefficient (h) change with respect to the variation of vapor quality. The trends are categorized by three trends such as noticeable increase of h with the increase of vapor quality and significant continuous decrease after dryout point, minor increase and decrease or decrease and increase of h, and gradual and continuous decrease of h with the increase of vapor quality. For each trend of h change, recommendable correlations and their basic equation forms were proposed to compare the prediction results with experimental data or to develop a new correlation by modifying existing correlations.

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,Renewable Energy, Sustainability and the Environment,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3