Occupancy Estimation Based on Indoor CO2 Concentration: Comparison of Neural Network and Bayesian Methods

Author:

Rahman Haolia1,Han Hwataik2

Affiliation:

1. Graduate School, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Korea

2. Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Korea

Abstract

The number of occupants in a space can significantly affect ventilation control. Using neural network and Bayesian Markov chain Monte Carlo (MCMC) methods, this study estimates the number of occupants based on CO2 concentration in a room. The abilities of both methods to recognize the input-parameter characteristics are compared under certain circumstances, and the parameters are optimized to improve the estimation accuracy. The neural network trains an input dataset of CO2 concentrations, ventilation rates, and occupancy patterns with tapped delay lines. Meanwhile, the Bayesian MCMC calculates the given CO2 data by a mathematical model based on a statistical approach. The present space model is a single-office room in which the CO2 concentration is determined through several simulation schemes and experiments. The estimation accuracy of the neural network depends on the complexity of the input parameters (i.e., CO2 concentration and ventilation rate), whereas the Bayesian MCMC is influenced by uncertainty in the CO2 concentration. Both methods produce acceptable estimates under certain treatments.

Funder

Ministry of Education

Industry-Academic Cooperation Program

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,Renewable Energy, Sustainability and the Environment,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3